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Abstract

An efficient enantiodivergent route to�-cuparenone, a sesquiterpene isolated in both enantiomeric forms, has
been developed utilizing a chiral cyclopentanoid starting material having a latentmesostructure. © 2000 Elsevier
Science Ltd. All rights reserved.
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Recently, we obtained1 enantiopure (cis-1,4)-4-cumyloxy-2-cyclopenten-1-ol1 in both enantiomeric
forms in excellent yields via resolution of the racemic alcohol (�)-1 under lipase-mediated kinetic
transesterification conditions (Scheme 1). Since the alcohol1 has a latentmesostructure, both of the
enantiomers may be utilized as a common chiral precursor capable of carrying out either enantiodi-
vergent or enantioconvergent synthesis if its hydroxy and cumyloxy functionalities can be chemically
discriminated. We wish to report here an enantiodivergent route to�-cuparenone2,3 18, a sesquiterpene
occurring in both enantiomeric forms in nature,4 where the single enantiomer (�)-1 plays a double role.

Scheme 1.

The enantiopure alcohol (�)-1 was first transformed into thetert-butyldimethylsilyl (TBS) ether (�)-
3, [�]D

31 �47.01 (c 1.00, CHCl3). Catalytic dihydroxylation5 of (�)-3 occurred diastereoselectively
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from the opposite side of the 1,4-substituents to give the single diol (�)-4, mp 48–49°C, [�]D
30�10.25

(c 0.75, CHCl3), which was converted into the acetonide (+)-5, [�]D
30 +20.76 (c 0.95, CHCl3), under

standard conditions.
Desilylation of (+)-5 with tetrabutylammonium fluoride (TBAF) gave the cyclopentanol (+)-6, mp

110–111°C, [�]D
29 +19.75 (c 0.75, CHCl3). Although (+)-6 suffered considerable decomposition under

standard oxidation conditions, it produced the ketone (+)-7, mp 98–99°C, [�]D
29 +144.15 (c 0.92,

CHCl3), excellently, under Dess–Martin conditions.6 Despite its double�-oxyketone structure, the (+)-7
obtained was found to be quite stable under ordinary conditions. Reaction of (+)-7 with methyllithium
in the presence of cerium(III) chloride7 occurred diastereoselectively from the convex face to give the
tertiary alcohol (+)-8, [�]D

31 +36.67 (c 0.92, CHCl3), as the single product. Removal of the cumyl group
of (+)-8 under hydrogenolysis conditions proceeded without difficulty to afford the cyclopentanediol
(+)-9, mp 88–89°C, [�]D

32 +11.74 (c 0.95, CHCl3). Overall yield of (+)-9 from (�)-1 was 55% in seven
steps.

On the other hand, (+)-5 was first subjected to hydrogenolysis to give the siloxy-alcohol (+)-10, [�]D
25

+5.52 (c 1.02, CHCl3). Dess–Martin conditions allowed facile oxidation of (+)-10 to give the ketone
(�)-11, [�]D

28 �136.59 (c 1.22, CHCl3), without initiation of�-elimination. Reaction of (�)-11 with
methyllithium in the presence of cerium(III) chloride as above gave, diastereoselectively, the tertiary
alcohol (+)-12, [�]D

29 +0.65 (c 1.30, CHCl3), which, on desilylation by TBAF, afforded the enantiomeric
diol (�)-9, mp 88–89°C, [�]D

28 �11.16 (c 1.01, CHCl3). Overall yield of (�)-9 from (�)-1 was 61%
in seven steps. It was noted that the 1,2-addition occurred stereoselectively from the opposite side of the
2,3-acetonide functionality in both (+)-7 and (�)-11 irrespective of the presence of a bulky substituent
on the convex face, respectively (Scheme 2).

Scheme 2.Reagents and conditions: (i) TBSCl, imidazole, DMF (95%); (ii) OsO4 (cat.), NMO, 50% aq. THF (90%); (iii)
2,2-dimethoxypropane, PPTS (cat.), CH2Cl2 (99%); (iv) TBAF, THF (93% for6 and 88% for (�)-9); (v) Dess–Martin oxidation
(96% for7 and 97% for11); (vi) MeLi, CeCl3, THF,�78°C (86% for8 and 88% for12); (vii) H 2, 10% Pd–C, CHCl3 (cat.),
AcOEt (85% for (+)-9 and 96% for10)

Having accomplished the enantiodivergent transformation of (�)-1 into both enantiomeric diols (+)-
and (�)-9, synthesis of�-cuparenone (�)-18 was next examined using one of the enantiomers, (�)-9,
to establish an enantiodivergent synthesis in the formal sense. Thus, oxidation of (�)-9 with pyridinium
chlorochromate (PCC) in dichloromethane proceeded neatly to give the�-hydroxyketone (+)-13, mp
72°C, [�]D

28 +189.61 (c 1.19, CHCl3), without initiation of�-elimination. The generation of the tertiary
�-hydroxyketone (+)-13 in a stable form was synthetically of interest as it allows further modification at
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this stage if such is considered desirable. Facile dehydration occurred to give the enone (+)-14, [�]D
25

+20.71 (c 1.03, CHCl3), when (+)-13 was warmed in acetic acid at 40°C. Treatment of (+)-14 with
a Grignard reagent in the presence of copper(I) bromide and trimethylsilyl chloride8 allowed convex-
face selective 1,4-addition to yield the single cyclopentanone (+)-15, [�]D

28 +178.14 (c 1.08, CHCl3),
carrying a benzylic quaternary stereogenic center. Conversion of (+)-15 into the known enone (+)-17,
serving as the key intermediate of (�)-�-cuparenone18, was carried out efficiently in a sequential
two-step reaction involving the reductive cleavage of the�-oxyketone functionality using aluminum
amalgam.9 Thus, treatment of (+)-15 with aluminum amalgam in ethanol allowed facile�-cleavage to
give the�-hydroxyketone (+)-16, [�]D

28 +40.48 (c 1.35, CHCl3), excellently, as a stable product. This
was stirred with diluted hydrochloric acid in dioxane at 40°C to initiate�-elimination to give rise to
the target enone (+)-17, [�]D

29 +141.70 (c 1.04, EtOH) [lit.2: [�]D
22 �139.15 (c 0.95, EtOH) for the

enantiomer], from which (�)-�-cuparenone18 has been obtained in three steps.2,3c Overall yield of
(+)-17 from (�)-9 was 54% in five steps (Scheme 3).

Scheme 3.Reagents and conditions: (i) PCC, CH2Cl2 (90%); (ii) AcOH, 40°C (93%); (iii) 4-MeC6H4MgBr, CuBr�SMe2,
HMPA, TMSCl, THF,�78°C, then TBAF, THF (87%); (iv) Al–Hg, EtOH (91%); (v) 10% HCl:dioxane (1:1), 40°C (81%)

In summary, we have devised an enantiodivergent route to�-cuparenone on the basis of the latent
mesostructure of the chiral starting material. The present procedure also constitutes an enantioconvergent
route to both (+)- and (�)-cuparenones in the formal sense as the enantiomeric starting material could
give the same enantiomeric pair, enantiodivergently. Although only the synthesis of�-cuparenone was
shown in this report, a series of the polyoxygenated bicyclic cyclopentanoids involved in the synthesis
may be widely utilized as versatile chiral building blocks owing to their biased structures which make
diastereocontrol very easy.
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